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Research

Both elevated blood pressure (BP) and ambient 
particu late air pollu tion have been associated 
with increased cardio vascular morbidity and 
mortality (Blacher et al. 2000; Brook et al. 
2010; Guo et al. 2010; Kan et al. 2007). An 
elevation in BP may be an important physio
logi cal mechanism linking particu late air 
pollu tion and adverse cardio vascular outcomes 
(Brook and Rajagopalan 2009). Among the 
size fractions of ambient particu late matter 
(PM), PM with an aerodynamic diameter 
≤ 2.5 µm (PM2.5) has been associated with 
adverse cardio vascular effects (Brook et al. 
2010; Kan et al. 2007). Controlled human and 
animal experiments have verified that exposure 
to PM2.5 is capable of inducing elevated BP 
(Brook et al. 2009; Chang et al. 2004; Urch 
et al. 2005; Zanobetti et al. 2004).

Ambient PM is a mixture of various 
chemical constitu ents, including carbonaceous 
fractions [organic carbon/elemental carbon 
(OC/EC)], ions, and transition metals. These 
constitu ents may have different effects on the 
cardio vascular system (Brook et al. 2010). 
Although several PM chemical constitu
ents (e.g., carbonaceous fractions) have been 
associated with pro hyper tensive effects in 
different populations (Mordukhovich et al. 
2009; Urch et al. 2005; Zanobetti et al. 2004), 
evidence for effects of specific PM chemical 

constitu ents on BP is still lacking. Specifically, 
trafficrelated PM may play a distinctive role 
in cardio vascular responses (Auchincloss 
et al. 2008; Brook et al. 2009; Delfino et al. 
2010; Jia et al. 2012; Wu et al. 2010, 2011a, 
2011b). Thus, a hypothesis that a group of 
PM chemical constitu ents and related sources 
may confer greater PM cardio vascular toxicity 
is reasonable based on the existing literature. 
We conducted the Healthy Volunteer Natural 
Relocation (HVNR) study to examine the 
relation ship between various PM2.5 chemical 
constitu ents and BP changes in a panel of 
healthy male university students in Beijing, 
China, before and after their relocation from 
a suburban campus to an urban campus 
with different PM air pollu tion constitu ents. 
We hypothesized that this relocation would 
substantially change the participants’ exposures 
to ambient PM2.5 and chemical constitu
ents associated with local pollu tion sources, 
and thus facilitate an analy sis of relationships 
between PM2.5 chemical constitu ents and BP 
in the study population.

Material and Methods
Study design. Beijing City covers an area of 
16,410 km2, has nearly 20,000,000 inhabi
tants, and is about 160 km from the near
est coastline. More than 5,000,000 vehicles 

are its main source of urban air pollu tion. 
Our study population consisted of a panel of 
41 male undergraduate college students from 
a university in Beijing [Beijing Institute of 
Technology (BIT)]. The BIT has two cam
puses located in different areas of Beijing 
(Figure 1). Study participants completed their 
first 2 years of undergraduate study (from 
autumn 2008 to summer 2010) at the BIT 
Liangxiang campus, which is located in a sub
urban area (Fangshan District), then moved 
to the BIT main campus, which is located 
in an urban area (Haidian District) for their 
next 2 years of study (from autumn 2010 to 
summer 2012). The BIT Liangxiang campus 
is about 2 km from the nearest freeway. There 
were several active construction sites within 
2 km of the campus during the study, in addi
tion to some industrial facilities located within 
several kilometers of the campus. In contrast, 
the BIT main campus is located in the Beijing 
downtown area, along the northwest inner 
side of the third ring road that circles the city. 
There were no substantive construction activi
ties or industrial facilities near the main cam
pus during the study. We used the following 
inclusion criteria to select participants before 
the study began: male with a geographical 
origin other than Beijing, nonobese, no his
tory of smoking, and without pulmonary, 
cardio vascular, and other chronic diseases. 
We used a selfadministered questionnaire to 
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collect personal information, including name, 
age, and medical history/health status. We 
scheduled 12 biweekly study visits for each 
participant over the entire study, including 
4 visits during each of the following three time 
periods: suburban period (22 April to 20 June 
2010) at the BIT Liangxiang campus  and 
urban period 1 (3 September to 8 November 
2010) and urban period 2 (10 April to 12 June 
2011) at the BIT main campus. The study was 
approved by the Institutional Review Board 
of Peking University Health Science Center, 
and informed consent was provided by each 
participant before the study began.

BP measurement. Study visits were sched
uled between 1300 and 1500 hours on week
days to minimize diurnal variation in BP. A 
trained technician in the hospital affiliated with 
the BIT Liangxiang campus or BIT main cam
pus performed standardized resting BP mea
surements during each study visit. Participants 
rested in a sitting position in a quiet room 
for at least 10 min before upper arm BP was 
measured using an Omron 705IT automated 
oscillometric monitor (HEM759E; Omron 
Healthcare Co. Ltd., Kyoto, Japan) at least 
three times with a 1min minimum interval 
between measurements. In most cases the sec
ond and third sets of readings were averaged 
to calculate systolic BP (SBP) and diastolic BP 
(DBP) (Rioux et al. 2010). However, if the dif
ference between SBP or DBP values of the sec
ond and third measurements was > 5 mmHg, 
the BP was considered unstable, and another 
1 to 3 measurements would be taken until the 
difference between the last two measurements 
was ≤ 5 mmHg. Under this condition, all read
ings (from the second to the last measurement) 
within a 5mmHg range of difference were 
averaged to calculate the final BP values. Pulse 
pressure (PP) was calculated as the difference 
between the average SBP and DBP values. 
Weight and height were measured during the 
first study visit in each time period, and body 
mass index (BMI) was calculated as weight in 
kilograms divided by height in meters squared. 
Two volunteers who did not complete study 
visits after relocation to the urban campus were 
excluded from data analy sis, leaving a total of 
39 participants.

Environmental data. Air pollu tion and 
weather data were measured using standard 
methods and quality controls at a central mon
itoring site on the BIT Liangxiang campus 
(suburban period) or the BIT main campus 
(urban periods 1 and 2). The BIT Liangxiang 
monitoring site was on the roof of a three
story building (about 10 m high) without any 
nearby structures that would obstruct air flow, 
and the BIT main campus monitoring site was 
on the roof of a fivestory building (about 15 m 
high) located within 200 m of the third ring 
road. The instruments and materials used for 
air monitoring included SKC sampling systems 

for PM2.5 mass collection on Teflon filters and 
quartzfiber filters (SKC Inc., Eighty Four, PA, 
USA) and a digital dust monitor for realtime 
PM2.5 concentration measurement (LD3K; 
Sibata Scientific Technology Inc., Tokyo, 
Japan); a model T15n enhanced carbon mon
oxide (CO) measurer for realtime CO con
centration measurement (Langan Products 
Inc., San Francisco, CA, USA); Ogawa pas
sive samplers for nitrogen oxides and nitrogen 
dioxide (NOx and NO2, respectively) collec
tion on cellulose fiber filters (Ogawa Air Inc., 
Osaka, Japan); and a HOBO Pro V2 logger 
for temperature and relative humidity mea
surements (Onset Corp., Pocasset, MA, USA). 
Data on PM with an aerodynamic diameter of 
≤ 10 µm (PM10) were obtained from the near
est city air monitoring stations (within 5 km 
of each campus) under the supervision of the 
Beijing Municipal Environmental Protection 
Bureau. Concentrations of coarse PM with 
an aerodynamic diameter of between 2.5 
and 10 µm (PM2.5–10) were calculated as the 
difference between the measured PM10 and 
PM2.5 concentrations.

Daily PM2.5 mass concentrations were 
determined by standard weighing procedures 
before and after the sample collection (Wu 
et al. 2010). The PM2.5 filters were analyzed 
in the laboratory for the following chemical 
constitu ents: OC and EC in quartzfiber fil
ters by thermo/optical transmission method 
(Lab OC/EC analyzer; Sunset Laboratory Inc., 
Tigard, OR, USA); sulfate, nitrate, chloride, 
and fluoride in Teflon filters by ion chroma
tography (model ICS2000; Dionex Corp., 
Sunnyvale, CA, USA); aluminum, calcium, 

sodium, potassium, magnesium, iron, and 
zinc in Teflon filters by inductively coupled 
plasma atomic emission spectrometry (model 
SPS8000; KCHG Co. Ltd., Beijing, China); 
and strontium, barium, lead, copper, titanium, 
nickel, molybdenum, cadmium, vanadium, 
chromium, manganese, arsenic, selenium, 
stannum, and antimony in Teflon filters by 
inductively coupled plasma mass spectrom
etry (model ELAN DRC II; PerkinElmer Inc., 
Shelton, CT, USA). We also estimated the 
concentrations of three additional carbona
ceous fractions [primary OC (POC), second
ary OC (SOC), and particu late organic matter 
(POM)], as described in detail in Supplemental 
Material, p. 2 (http://dx.doi.org/10.1289/
ehp.1104812). PM2.5 constitu ents were classi
fied according to their chemical nature as car
bonaceous fractions, negative ions, transition 
metals, crustal metals, or other metals/metal
loid elements. NOx and NO2 were collected on 
cellulose fiber filters and concentrations were 
determined using a spectrophotometer follow
ing the manufacturer’s specifications (Ogawa 
& Company USA, Inc., Pompano Beach, FL, 
USA). Nitric oxide (NO) concentrations were 
calculated as the difference between the NOx 
and NO2 concentrations.

Statistical analy sis. We first used paired 
ttests to compare the mean BP changes 
between periods by subject, and then we used 
mixedeffects regression models in SAS ver
sion 9.2 (SAS Institute Inc., Cary, NC, USA) 
to estimate associations between exposure 
varia bles and BP. Environmental data were 
matched with BP data for each subject before 
analy sis. The mixedeffects models included a 

Figure 1. Map showing locations of the two BIT campuses involved in the study.
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random intercept for each subject to account 
for withinsubject correlations due to repeated 
measurements. Base models included individ
ual air pollu tants or PM2.5 constitu ents, and 
were adjusted for age, BMI, temperature, and 
relative humidity as continuous varia bles, with 
linear and quadratic terms for temperature 
and relative humidity (Mordukhovich et al. 
2009), and also adjusted for season, month, 
dayofweek, hourofday, and study site as 
binary or cate gorical varia bles. In addition, we 
included a dayofstudy varia ble and a squared 
dayofstudy varia ble in the models to account 
for secular trends in associations between air 
pollu tion and BP (Penttinen et al. 2001).

We used three kinds of models to investi
gate the associations between exposure varia
bles and BP after combining the data over 
the three time periods. First, we modeled 
individual air pollu tants or PM2.5 constitu
ents to estimate associations with BP, with 
adjustment for the potential confounders 
listed above. Second, we estimated associa
tions of individual PM2.5 constitu ents and 
BP with adjustment for total PM2.5. Third, 
we used a constitu ent residual model analy sis 
to address collinearity between total PM2.5 
and PM2.5 constitu ents (Wu et al. 2011a). 
Specifically, we regressed daily concentrations 
of each PM2.5 constitu ent on total PM2.5 
concentrations using a separate linear regres
sion model for each time period to generate a 
constitu ent residual for each daily concentra
tion value of the constitu ent. The constitu
ent residual represented the proportion of 
the constitu ent that is uncorrelated with total 
PM2.5 and therefore can be interpreted as a 
measure of the independent contribution of 
each constitu ent to associations with BP.

To estimate the cumulative effects of expo
sure, we modeled the mean concentrations 
of exposure varia bles during the preceding 
1–5 days before BP measurement (Hoffmann 
et al. 2012). We reported results using 
mean concentrations during the preceding 

1–3 days because most associations with BP 
were observed with exposures during this 
time period. Results are expressed as absolute 
changes [in millimeters mercury (mmHg)] 
with 95% CIs for the BP varia bles associated 
with interquartile range (IQR) increases in air 
pollu tants and PM2.5 constitu ents. The statis
tical significant level was defined as p < 0.05 
(two sided).

Results
The mean (range) age of the eligible study sub
jects (n = 39) was 20.1 years (19–22 years), and 
their mean (range) BMI was 21.2 kg/m2 (17.2–
24.9 kg/m2). Overall, 34 subjects completed 

all 12 biweekly visits, 4 completed 11 visits, 
and 1 completed 8 visits, resulting in a total of 
460 visits. SBP and PP increased over the three 
time periods, whereas DBP levels remained rela
tively stable (Table 1).

Most air pollu tants and PM2.5 constitu
ents showed substantial variation over the 
three time periods (Table 2). In particular, 
concentrations of gaseous air pollu tants (e.g., 
CO, NOx, and NO2) and levels of several 
PM2.5 carbonaceous fractions related to traffic 
(OC, EC, POC, and POM based on concen
trations or proportions of PM2.5 mass) were 
higher during the urban periods than in the 
suburban period.

Table 1. Descriptive statistics on BP by time period.

Variable/period n
Mean ± SD 

(mmHg)
Range 

(mmHg) p-Valuea

SBP
Suburban period 153 117.0 ± 10.1 91–146
Urban period 1 156 119.1 ± 11.4 90–154
Urban period 2 151 120.9 ± 12.1 89–156
Total 460 119.0 ± 11.3 89–156 0.010

DBP
Suburban period 153 65.8 ± 7.3 41–91
Urban period 1 156 66.2 ± 6.9 54–94
Urban period 2 151 65.9 ± 6.7 54–89
Total 460 66.0 ± 7.0 41–94 0.847

PP
Suburban period 153 51.2 ± 8.3 29–75
Urban period 1 156 52.9 ± 7.9 32–71
Urban period 2 151 55.0 ± 9.3 32–73
Total 460 53.0 ± 8.7 29–75 < 0.001

ap-Value for analy sis variance for repeated measure ments.

Table 2. Descriptive statistics on daily environmental varia bles over the study.

Variable

Suburban period Urban period 1 Urban period 2

IQRaMean ± SD
Percent 
of PM2.5 Mean ± SD

Percent 
of PM2.5 Mean ± SD

Percent 
of PM2.5

PM10 (μg/m3) 135.4 ± 64.1 111.3 ± 75.0 129.4 ± 87.2 66.0
PM2.5–10 (μg/m3) 56.1 ± 47.5 36.3 ± 29.3 69.5 ± 62.8 42.3
PM2.5 (μg/m3) 82.0 ± 46.6 78.1 ± 72.5 59.9 ± 40.3 51.2
Carbonaceous fractions

OC (μg/m3) 10.2 ± 5.5 15.5 12.6 ± 9.0 20.6 10.6 ± 3.9 24.0 3.7
EC (μg/m3) 2.0 ± 1.2 2.88 3.3 ± 2.6 4.65 1.7 ± 0.9 3.64 1.5
POC (μg/m3) 4.4 ± 2.3 6.26 8.2 ± 6.3 11.4 6.0 ± 3.1 13.2 4.1
SOC (μg/m3) 5.9 ± 4.9 9.30 4.4 ± 3.3 9.20 4.6 ± 2.4 10.8 1.9
POM (μg/m3) 16.4 ± 8.8 24.9 20.1 ± 14.4 32.9 16.9 ± 6.2 38.4 5.9

Ions
SO4

2– (μg/m3) 16.8 ± 15.0 18.4 12.0 ± 14.2 13.0 8.9 ± 9.0 13.1 10.0
NO3

– (μg/m3) 2.9 ± 2.8 2.98 3.5 ± 4.7 3.21 2.1 ± 2.8 2.57 2.6
Cl– (μg/m3) 1.0 ± 1.1 1.18 1.5 ± 1.8 1.73 0.9 ± 1.2 1.40 1.2
F– (ng/m3) 31.9 ± 32.3 0.052 57.9 ± 48.2 0.107 51.7 ± 47.1 0.099 57.0

Transition metals
Fe (μg/m3) 0.8 ± 0.4 1.21 0.7 ± 0.4 1.16 0.8 ± 0.9 1.30 0.5
Zn (μg/m3) 0.4 ± 0.3 0.52 0.4 ± 0.4 0.50 0.4 ± 0.3 0.62 0.3
Mn (ng/m3) 65.9 ± 45.0 0.116 60.4 ± 30.6 0.110 48.3 ± 26.9 0.096 35.5
Ti (ng/m3) 48.5 ± 33.3 0.071 38.0 ± 24.2 0.068 52.6 ± 79.8 0.093 29.5
Cu (ng/m3) 30.1 ± 24.3 0.038 37.5 ± 35.4 0.049 26.3 ± 22.9 0.042 26.9
Cr (ng/m3) 18.5 ± 22.5 0.036 8.9 ± 5.6 0.019 8.5 ± 6.7 0.021 5.1
Ni (ng/m3) 3.7 ± 2.2 0.006 3.4 ± 3.5 0.006 3.3 ± 2.5 0.007 2.1
Cd (ng/m3) 2.6 ± 2.8 0.003 3.2 ± 3.4 0.004 2.4 ± 2.7 0.004 2.5
V (ng/m3) 3.1 ± 1.8 0.004 1.6 ± 1.1 0.003 1.7 ± 1.9 0.003 1.3
Mo (ng/m3) 1.9 ± 2.1 0.004 1.3 ± 0.8 0.002 0.8 ± 0.7 0.002 0.9

Crustal metals
K (μg/m3) 1.1 ± 0.9 1.32 1.4 ± 0.9 2.59 1.0 ± 0.9 1.71 1.0
Ca (μg/m3) 1.1 ± 0.8 1.64 0.8 ± 0.4 1.61 1.0 ± 0.7 1.79 0.7
Al (μg/m3) 1.0 ± 0.8 1.46 0.5 ± 0.2 0.97 0.8 ± 1.6 1.23 0.5
Na (μg/m3) 0.6 ± 0.6 0.82 0.8 ± 0.5 1.60 0.6 ± 0.4 1.46 0.4
Mg (ng/m3) 292.4 ± 249.1 0.43 194.2 ± 98.9 0.37 318.4 ± 341.6 0.57 148.3
Ba (ng/m3) 14.0 ± 8.2 0.021 17.2 ± 10.0 0.033 14.6 ± 12.4 0.027 11.8
Sr (ng/m3) 9.5 ± 6.4 0.015 6.0 ± 3.1 0.011 6.6 ± 5.0 0.012 4.8

Other metals/metalloid elements
Pb (ng/m3) 127.7 ± 89.6 0.158 125.0 ± 122.5 0.153 119.2 ± 111.7 0.181 127.7
As (ng/m3) 16.0 ± 19.9 0.018 17.1 ± 24.0 0.018 32.6 ± 35.2 0.058 19.5
Sn (ng/m3) 7.3 ± 5.7 0.009 9.2 ± 9.5 0.012 6.8 ± 5.8 0.011 6.8
Sb (ng/m3) 6.6 ± 5.6 0.008 8.6 ± 7.6 0.011 6.0 ± 4.9 0.010 6.1
Se (ng/m3) 7.3 ± 5.9 0.009 5.4 ± 4.6 0.008 3.9 ± 3.4 0.006 4.4

CO (ppm) 0.90 ± 0.33 1.67 ± 0.60 1.47 ± 0.45 0.74
NOx (ppb) 41.6 ± 18.1 70.7 ± 39.4 48.3 ± 17.7 35.1

NO2 (ppb) 24.1 ± 8.0 38.0 ± 14.8 31.7 ± 11.8 14.2
NO (ppb) 17.4 ± 12.4 32.8 ± 29.3 16.5 ± 10.9 26.8

Temperature (°C) 23.8 ± 5.3 17.3 ± 6.5 22.4 ± 4.5 —
Relative humidity (%) 47.5 ± 15.9 55.7 ± 15.7 37.9 ± 14.5 —

Abbreviations: Al, aluminum; As, arsenic; Ba, Barium; Ca, calcium; Cd, cadmium; Cl–, chloride; CO, carbon monoxide; Cr, 
chromium; Cu, copper; EC, elemental carbon; F–, fluoride; Fe, iron; K, potassium; Mg, magnesium; Mn, manganese; Mo, 
molybdenum; Na, sodium; Ni, nickel; NO, nitric oxide; NO3

–, nitrate; NOx, nitrogen oxides; OC, organic carbon; Pb, lead; 
POC, primary organic carbon; POM, particulate organic matter; Sb, antimony; Se, selenium; Sn, stannum; SO4

2–, sulfate; 
SOC, secondary organic carbon; Sr, strontium; Ti, titanium; V, vanadium; Zn, zinc. 
aIQR values of air pollu tant concentrations during the preceding 1 day before the BP measurement.
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SBP and PP levels during the urban periods 
were significantly higher than during the 
suburban period, and SBP and PP levels during 
the urban period 2 were also significantly higher 
than those during the urban period 1 (Table 3). 
There was no significant difference in DBP 
levels between any two periods. IQR increases 
in major air pollu tant concentrations (PM 
fractions, NOx, and NO2) during the 1–3 days 
before study visits showed significant positive 
associations with SBP or DBP, with more 
consistent associations observed with DBP 
than SBP [see Supplemental Material, Table S1 
(http://dx.doi.org/10.1289/ehp.1104812)]. 

An IQR increase (51.2 µg/m3) in PM2.5 
during the preceding day was associated with a 
1.08mmHg (95% CI: 0.17, 1.99) increase in 
SBP and a 0.96mmHg (95% CI: 0.31, 1.61) 
increase in DBP. There were no significant 
associations between the major air pollu tants 
and PP (data not shown).

We found significant associations between 
SBP or DBP and concentrations of several 
PM2.5 constitu ents during the preceding day, 
though some associations that were statistically 
significant based on singleconstitu ent 
models were not significant after adjustment 
for PM2.5 or based on constitu ent residual 

models (Figures 2–4). However, all three 
model estimates indicated significant positive 
associations between SBP and chloride, nickel, 
and strontium (Figure 2); between DBP and 
OC, EC, POC, POM, chloride, fluoride, and 
lead (Figure 3); and between PP and nickel and 
magnesium (Figure 4). In addition, all three 
model estimates indicated significant negative 
associations between SBP and manganese, 
chromium, and molybdenum, and between 
DBP and chromium and molybdenum. We 
also found significant associations between 
SBP and zinc during the preceding 3 days, and 
between PP and arsenic during the preceding 
3 days based on three different models (data 
available upon request).

Discussion
We evaluated relationships between BP and 
various air pollu tants and PM2.5 chemical 
constitu ents under natural exposure settings 
using a panel study design that repeatedly 
measured resting BP during three time peri
ods with different ambient air pollu tion expo
sures. The relocation of the study population 
from a suburban campus to an urban campus, 
which was a normal part of their university 
education, gave us the opportunity to study 
associations with specific PM2.5 constitu ents 
that may have distinct cardio vascular effects 
(Brook et al. 2009). We observed increases 
in SBP and PP after relocation from the sub
urban campus to the urban campus located in 
a megacity with high air pollu tion levels, and 
we estimated consistent associations between 
BP measures and a subset of PM2.5 chemical 
constitu ents.

Major sources of particu late air pollu tion 
in Beijing include road dust, motor vehicle 
exhaust, industry, incineration, and coal 
burning (Sun et al. 2004). During recent years, 
the number of motor vehicles in Beijing has 
increased rapidly and traffic emissions have 
become a dominant source of ambient air 
pollu tion (Stone 2008; Wang et al. 2009; Zhou 
et al. 2010). Evidence linking trafficrelated 
air pollu tion and cardio vascular outcomes has 
been growing, especially in urban areas where 
traffic emissions are one of the major pollu
tion sources (Brook et al. 2009; Delfino et al. 
2010; Jia et al. 2012; Wu et al. 2010, 2011a, 
2011b). OC and EC (or its surrogate, black 
carbon) are two commonly used indicators 
of traffic emissions (Delfino et al. 2010; Sun 
et al. 2004; Wang et al. 2009). Shortterm 
exposures to these carbonaceous particles have 
been associated with pro hypertensive effects 
in patients with cardio vascular conditions 
(Delfino et al. 2010; Zanobetti et al. 2004). In 
our study, we found that PM2.5 measured in 
the urban area contained larger proportions of 
carbonaceous fractions than PM2.5 measured 
in the suburban area (Table 2). This suggests 
a greater contribution of traffic emissions 

Table 3. Mean BP changes (mmHg) between periods by subject.

Period pair/variable n (subjects)a Mean ± SDb Range p-Valuec

Urban period 1–suburban period
SBP 36 2.2 ± 5.6 –11.8–12.8 0.024
DBP 36 0.4 ± 3.3 –7.3–9.9 0.472
PP 36 1.8 ± 4.7 –11.2–12.7 0.026

Urban period 2–suburban period
SBP 34 3.5 ± 5.3 –8.2–15.9 0.001
DBP 34 –0.1 ± 2.1 –3.9–4.6 0.711
PP 34 3.7 ± 5.1 –6.0–13.7 < 0.001

Urban period 2–urban period 1
SBP 37 1.7 ± 4.6 –9.8–13.2 0.035
DBP 37 –0.4 ± 3.3 –8.1–6.4 0.291
PP 37 2.1 ± 3.8 –9.4–9.1 0.001

aEach comparison is restricted to the subjects who had completed all eight study visits over the two periods being com-
pared. bMean difference between the two periods (the latter period of the pair is used as the reference). cPaired t-test.

Figure 2. Changes in SBP associated with IQR increases in PM2.5 constitu ents at concentration during the 
preceding day before the BP measurement. Estimates are adjusted for age, BMI, season, month, day-of-
study, squared day-of-study, day-of-week, hour-of-day, study site, temperature, and relative humidity in 
linear and quadratic terms. Data are presented as effect estimates ± 95% CIs. For constitu ent-PM2.5 joint 
models, we used the main effect estimates of PM2.5 constitu ents for result presentation.
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to the particu late air pollu tion in the urban 
area. We found robust positive associations 
between PM2.5 carbonaceous fractions and 
DBP in our study participants. When OC was 
subclassified as POC or SOC, the association 
appeared to be specific to POC (Figure 3). 
POC is a representative indicator of particu late 
organics from fossil fuel combustion sources 
in the context of traffic related air pollu tion 
(Delfino et al. 2010). Therefore, our findings 
suggest that PM carbonaceous fractions related 
to traffic may play an important role in the 
pro hypertensive effects of PM air pollu tion.

Several PM2.5 metal constitu ents, includ
ing nickel, zinc, magnesium, strontium, lead, 
and arsenic, had robust positive associations 
with SBP, DBP, or PP, whereas manganese, 
chromium, and molybdenum had robust nega
tive associations with SBP or DBP. Among 
these constitu ents, nickel, zinc, manganese, 
chromium, and lead typically come from 
industrial emissions, including metallurgi
cal processes, but some of these metals (e.g., 
zinc, nickel, manganese) may also come from 
traffic emissions (Loranger and Zayed 1995; 
Sun et al. 2004). Magnesium usually origi
nates from mineral aerosols that may result 
from resuspended road dust and longrange 
transported dust (Sun et al. 2004), and arsenic 
is typically generated from coal burning (Xie 
et al. 2006). Relationships between BP and 
these metals/metalloid elements, especially the 
transition metals (e.g., nickel, zinc, manganese, 
cadmium), have been well demonstrated in 
previous toxicological studies in vivo (Fiorim 
et al. 2011; Kasten et al. 1994; Wang et al. 
2002; Yanagisawa et al. 2004; Yang et al. 
2007). When delivered to the airways, the 
transition metals could stimulate the produc
tion of reactive oxygen species and then induce 
airway injury and inflammation, which are 
subsequently followed by a series of cardio
pulmonary responses (GonzálezFlecha 2004). 
Epidemiologic evidence linking metals/metal
loid elements and BP has also been growing. 
For example, chronic exposures to arsenic and 
lead have been associated with increased BP 
or higher hypertension prevalence in popula
tions (Mordukhovich et al. 2012; NavasAcien 
et al. 2007). Specifically, we found robust neg
ative associations between manganese, chro
mium, and molybdenum and SBP or DBP. 
Environmental manganese is generally consid
ered to reduce hypertension risk (Houtman 
1996). A previous animal experiment found 
that infusing manganese into conscious, 
restrained rats resulted in a decrease in BP 
(Kasten et al. 1994), and results from a recent 
epidemiologic study found negative associa
tions between chronic manganese exposure 
and BP in elderly men (Mordukhovich et al. 
2012). However, our findings on the negative 
associations between BP and chromium and 
molybdenum are not supported by previous 

experimental and epidemiologic reports, and 
a causal explanation for these findings may 
require further investigation.

We found small but robust positive asso
ciations between chloride and SBP and DBP, 
less consistent associations between fluo
ride and DBP, and inconsistent associations 
between sulfate and nitrate and BP. Sulfate 
and nitrate are typical secondary pollu tants 
that constitute a significant proportion of the 
PM2.5 mass. In urban areas far from coast
lines, the major source for airborne chloride 
may be from burning polyvinylchloride plas
tic in refuse dumps, and large amounts of 
pollu tants such as fluoride may also be emit
ted when trash is being smashed or inciner
ated (Sun et al. 2004). Experimental studies 
have demonstrated that chloride was critical 
in the development of hypertension (Kurtz 
and Morris 1984; Kurtz et al. 1987; Ziomber 
et al. 2008). That is, dietary intake of sev
eral ions, including sodium, potassium, and 
chloride, were able to induce increased BP in 
rats (Ziomber et al. 2008), whereas sodium 
loading without chloride failed to increase 
BP in animals (Kurtz and Morris 1984) or 
men (Kurtz et al. 1987). Nevertheless, evi
dence for the relationship between these air
borne ions and BP is still rare and requires 
further investigation.

Associations with the different BP varia
bles differed over the study. SBP and PP 
levels tended to increase over time, whereas 
DBP levels did not. Among the BP varia bles, 
PP has been regarded as a stronger predic
tor of adverse cardiac outcomes, especially in 
hypertensive patients (Blacher et al. 2000). 
Several studies have investigated associations 
between air pollu tion and BP, but only a few 
of them have examined PP (Auchincloss et al. 
2008; Rioux et al. 2010). Our findings also 
indicated wide variation among individual 
study participants, with SBP or PP increasing 
by > 10 mmHg after relocation to the urban 
campus in some cases. This suggests that sus
ceptibility to the effects of air pollu tants may 
vary substantially among individuals in the 
general population.

The study has several strengths in addi
tion to the natural relocation study design. 
Participants were young, healthy volunteers 
who were nonsmokers and free of any cardio
vascular compromises. Therefore, confounding 
by factors such as age, smoking, disease status, 
medication use, or obesity was unlikely. We 
conducted the study in the spring and autumn 
seasons to avoid significant climate changes 
that might confound associations between 
air pollu tants and BP (Adamopoulos et al. 
2010). We used constitu ent residual models 

Figure 3. Changes in DBP associated with IQR increases in PM2.5 constitu ents at concentration during the 
preceding day before the BP measurement. Estimates are adjusted for age, BMI, season, month, day-of-
study, squared day-of-study, day-of-week, hour-of-day, study site, temperature, and relative humidity in 
linear and quadratic terms. Data are presented as effect estimates ± 95% CIs. For constitu ent-PM2.5 joint 
models, we used the main effect estimates of PM2.5 constitu ents for result presentation.
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to estimate associations with PM2.5 constitu
ents, and we adjusted for many potential con
founders. However, residual or unmeasured 
confounding cannot be excluded, and general
izability to other populations may be limited.

This study has several other limitations. 
First, we used ambient air pollu tion data from 
central monitoring sites rather than personal 
exposure measures. However, all participants 
lived in school dormitories within 300 m of 
the monitoring site for each campus, and they 
spent most of their time in naturally ventilated 
buildings near the monitoring site. Therefore, 
air pollution data from central monitoring 
sites could be used as good surro gates for their 
real exposures. Second, as in most epidemio
logic studies, we were not able to determine 
whether the observed associations were due to 
the measured air pollu tion constitu ents or to 
other factors that varied along with constitu ent 
concentrations (e.g., pollu tion sources, seasons, 
locations, or even other pollu tants that might be 
related or correlated to the measured constitu
ents). For example, both seasonal and regional 
variation in estimated effects of air pollu tion 
on cardio vascular outcomes have been reported 
by previous studies (Brook et al. 2009; Choi 
et al. 2007). Changes in season or location may 
result in changes in air pollu tion sources and 
the constitu ents of air pollu tion, which in turn 

may influence the effects of air pollu tion on the 
cardio vascular system. As a result, we were not 
able to differentiate effects of season or location 
from potential effects of air pollu tion in the cur
rent study. Third, other gaseous air pollu tants 
that may also contribute to the adverse cardio
vascular outcomes (e.g., ozone and sulfur diox
ide) were not measured in the present study. 
Finally, there is a potential confounding effect 
associated with the progression in university 
education on BP through changes in the partic
ipants’ stress levels across different periods that 
could not be excluded. However, in view that 
the estimated air pollu tion effects were quite 
strong after adjusting for various factors related 
to seasonal and regional factors, we believe this 
kind of confounding effect would not be able to 
change our findings materially.

Conclusions
Our findings suggest that specific PM2.5 
chemi cal constitu ents may be associated with 
BP in healthy adults. These findings also sug
gest potential linkages between pollu tion 
sources and PMrelated cardio vascular effects. 
A better understanding of the responsible PM 
constitu ents and their sources could lead to 
more targeted and effective regulations (Brook 
et al. 2010). This is especially important 
for the most polluted regions and countries 

around the world. As the largest developing 
country, China is now facing the worst air 
pollu tion problem in the world along with 
its rapid economic expansion over the past 
decades (Kan et al. 2012). Our findings thus 
may have implications for the development 
of relevant pollu tion abatement strategies that 
maximize benefits to public health.
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